Sex differences in the modulation of K+ currents in diabetic rat cardiac myocytes

糖尿病大鼠心肌细胞 K+ 电流调节的性别差异

阅读:5
作者:Yakhin Shimoni, Xiu-Fang Liu

Abstract

A transient (Ipeak) and a sustained (Isus) outward K+ current were measured, using whole-cell voltage-clamp methods, in isolated rat ventricular myocytes obtained by enzymatic dispersion. A comparison was made between male and female rats following induction of (insulin-deficient) diabetes with streptozotocin (STZ). In control (non-diabetic) rats, both currents were smaller in cells obtained from females, as compared to males (P<0.005). However, whereas inducing diabetes in male rats significantly attenuated both Ipeak and Isus (P<0.005), Ipeak was unchanged in female diabetic rats. Isus was significantly (P<0.005) reduced, but the extent of reduction was smaller (P<0.02) than in males. The formation of angiotensin II (ATII) or endothelin-1 (ET-1) was blocked using inhibitors of angiotensin-converting enzyme (ACE) and endothelin-converting enzyme (ECE), respectively. In cells from diabetic males both inhibitors significantly (P<0.005) enhanced K+ currents. In contrast, no effect was observed in cells from female diabetic rats. However, in ovariectomized (Ovx) diabetic females the in vitro inhibition of ATII and ET-1 formation augmented the two K+ currents, but not when oestradiol was administered in vivo prior to cell isolation. In cells from diabetic males, incubation with 100 nM 17beta-oestradiol significantly (P<0.005) enhanced both Ipeak and Isus. This effect was blocked if ATII or ET-1 was added to the medium. These results show that autocrine modulation of K+ currents by renin-angiotensin and endothelin systems is attenuated or absent in female diabetic rats. Oestradiol plays a key role in reducing this modulation. These results may underlie some of the sex differences associated with development of cardiac arrhythmias.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。