Tetraethylenepentamine-Coated β Cyclodextrin Nanoparticles for Dual DNA and siRNA Delivery

四乙烯五胺包覆的 β 环糊精纳米粒子用于双重 DNA 和 siRNA 递送

阅读:6
作者:Chi-Hsien Liu, Pei-Yin Shih, Cheng-Han Lin, Yi-Jun Chen, Wei-Chi Wu, Chun-Chao Wang

Abstract

Nucleic acid reagents, including plasmid-encoded genes and small interfering RNA (siRNA), are promising tools for validating gene function and for the development of therapeutic agents. Native β-cyclodextrins (BCDs) have limited efficiency in gene delivery due to their instable complexes with nucleic acid. We hypothesized that cationic BCD nanoparticles could be an efficient carrier for both DNA and siRNA. Tetraethylenepentamine-coated β-cyclodextrin (TEPA-BCD) nanoparticles were synthesized, characterized, and evaluated for targeted cell delivery of plasmid DNA and siRNA. The cationic TEPA coating provided ideal zeta potential and effective nucleic acid binding ability. When transfecting plasmid encoding green fluorescent protein (GFP) by TEPA-BCD, excellent GFP expression could be achieved in multiple cell lines. In addition, siRNA transfected by TEPA-BCD suppressed target GFP gene expression. We showed that TEPA-BCD internalization was mediated by energy-dependent endocytosis via both clathrin-dependent and caveolin-dependent endocytic pathways. TEPA-BCD nanoparticles provide an effective means of nucleic acid delivery and can act as potential carriers in future pharmaceutical application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。