TRIM32 regulates insulin sensitivity by controlling insulin receptor degradation in the liver

TRIM32 通过控制肝脏胰岛素受体降解来调节胰岛素敏感性

阅读:7
作者:Shilpa Thakur, Priya Rawat, Budheswar Dehury, Prosenjit Mondal

Abstract

Impaired insulin receptor signaling is strongly linked to obesity-related metabolic conditions like non-alcoholic fatty liver disease (NAFLD) and Type 2 diabetes (T2DM). However, the exact mechanisms behind impaired insulin receptor (INSR) signaling in obesity induced by a high-fat diet remain elusive. In this study, we identify an E3 ubiquitin ligase, tripartite motif-containing protein 32 (TRIM32), as a key regulator of hepatic insulin signaling that targets the insulin receptor (INSR) for ubiquitination and proteasomal degradation in high-fat diet (HFD) mice. HFD induces the nuclear translocation of SREBP-1c (Sterol Regulatory Element-Binding Protein 1c), resulting in increased expression of TRIM32 in hepatocytes. TRIM32 ubiquitylates INSR and facilitates its proteasomal degradation, leading to severe insulin resistance and fat accumulation within the liver of high-fat diet induced obese (DIO) mice. Conversely, liver-specific knockdown of TRIM32 enhances INSR expression and hepatic insulin sensitivity. Reduced AMPK signaling and phosphorylation of SREBP-1c at S372 in high-fat DIO mice promotes the nuclear translocation of SREBP-1c, leading to increased TRIM32 expression. In conclusion, our results demonstrate that TRIM32 promotes diet-induced hepatic insulin resistance by targeting the INSR to degradation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。