The Conformational Change of the L3 Loop Affects the Structural Changes in the Substrate Binding Pocket Entrance of β-Glucosidase

L3环构象变化影响β-葡萄糖苷酶底物结合口袋入口结构变化

阅读:7
作者:Ki Hyun Nam

Abstract

β-glucosidase (Bgl) hydrolyzes cellobiose to glucose, thereby releasing non-reducing terminal glucosyl residues. Bgl is an essential enzyme belonging to the biomass-degrading enzyme family, which plays a vital role in enzymatic saccharification during biofuel production. The four loops above the Bgl substrate-binding pocket undergo a conformational change upon substrate recognition. However, the structural dynamism of this loop and how it is conserved among Bgl family members remain unknown. Herein, to better understand the four loops above the substrate-binding pocket of Bgl, four Bgl crystal structures in Thermoanaerobacterium saccharolyticum (TsaBgl) were determined at 1.5-2.1 Å. The L1, L2, and L4 loops of TsaBgl showed a rigid conformation stabilized by their neighboring residues via hydrogen bonds and hydrophobic interactions. The TsaBgl L3 loop showed relatively high flexibility and two different N-terminal region conformations. The conformational change in the TsaBgl L3 loop induced a change in charge and shaped at the substrate-binding pocket entrance. The amino acid sequences and structures of the TsaBgl L1-4 loops were compared with other 45 Bgl proteins, and a diversity of the L2 and L3 loops was observed. Differences in amino acids and lengths of Bgls L2-L3 loop induced differences in the conformation and structure of the Bgls substrate-binding pocket entrance. These findings expand our knowledge on the molecular function of the loops in the Bgl enzyme family.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。