Vortioxetine exhibits anti-glioblastoma activity via the PI3K-Akt signaling pathway

沃替西汀通过 PI3K-Akt 信号通路发挥抗胶质母细胞瘤活性

阅读:7
作者:Huan-Qi Zhang, Dao-Ming Zhang, Zhi-Zhen Huang, Jing Cheng, Chong Zhang, Neng-Ming Lin, Yangling Li

Abstract

Glioblastoma multiforme (GBM) presents a significant challenge in oncology due to its highly aggressive nature and inherent resistance to conventional therapeutic interventions. Vortioxetine, a novel antidepressant, exhibits anticancer abilities and can traverse the blood-brain barrier. In this study, the antitumor effect and mechanism of vortioxetine on GBM cells were investigated. Cell proliferation in GBM cells was assessed using the CCK8 and colony formation assays. Flow cytometry, western blot, and wound healing assay were used to study the mechanisms of vortioxetine. mCherry-GFP-LC3B and confocal microscopy were used to evaluate autophagic activity. RNA sequencing uses the capabilities of high-throughput sequencing methods to provide insight into the transcriptome of cells. Vortioxetine significantly inhibited the proliferation of GBM cells by inducing G1/G0 phase cell cycle arrest. Meanwhile, it also reduced the migratory capabilities of GBM cells. Furthermore, it promoted apoptotic cell death in GBM cells. In addition, it promoted autophagy in GBM cells, and autophagy inhibitors markedly enhanced its antiproliferative activities. Vortioxetine could down-regulate the expressions of PI3K and Akt, which were related to the occurrence and development of GBM. Our findings support the potential of vortioxetine as a novel therapeutic agent for GBM treatment. Vortioxetine exhibits anti-GBM activity via the PI3K-Akt signaling pathway. Meanwhile, our findings reveal autophagy inhibitors as an effective sensitizer for vortioxetine, offering new strategies for treating GBM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。