Influence of MoO3(110) crystalline plane on its self-charging photoelectrochemical properties

MoO3(110)晶面对其自充电光电化学性能的影响

阅读:6
作者:Shi Nee Lou, Nicholas Yap, Jason Scott, Rose Amal, Yun Hau Ng

Abstract

Nanocrystalline molybdenum oxide (α-MoO3) thin films with iso-oriented crystalline layers were synthesised by the anodisation of Mo foils. Upon band-gap excitation using light illumination, α-MoO3 generates excited electrons for reductive reactions and stores some of the excited electrons in its layered crystalline structure via alkali cation intercalation. These stored electrons can be subsequently discharged from α-MoO3 to allow reductive reactions to continue to occur under non-illuminated conditions. The modulation of water concentrations in the organic/aqueous anodisation electrolytes readily produces α-MoO3 crystals with high degree of (kk0) crystallographic orientation. Moreover, these (kk0)-oriented MoO3 crystals exhibit well-developed {hk0} and {0k0} crystal facets. In this paper, we show the benefits of producing α-MoO3 thin films with defined crystal facets and an iso-oriented layered structure for in situ storing of excited charges. α-MoO3 crystals with dominant (kk0) planes can achieve fast charging and a strong balance between charge release for immediate exploitation under illuminated conditions and charge storage for subsequent utilisation in dark. In comparison, α-MoO3 crystals with dominant (0k0) planes show a preference for excited charge storage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。