The molecular basis for distinct pathways for protein import into Arabidopsis chloroplasts

蛋白质进入拟南芥叶绿体的不同途径的分子基础

阅读:6
作者:Hitoshi Inoue, Caleb Rounds, Danny J Schnell

Abstract

The translocons at the outer envelope membrane of chloroplasts (TOCs) initiate the import of thousands of nucleus-encoded proteins into the organelle. The identification of structurally and functionally distinct TOC complexes has led to the hypothesis that the translocons constitute different import pathways that are required to coordinate the import of sets of proteins whose expression varies in response to organelle biogenesis and physiological adaptation. To test this hypothesis, we examined the molecular basis for distinct TOC pathways by analyzing the functional diversification among the Toc159 family of TOC receptors. We demonstrate that the N-terminal A-domains of the Toc159 receptors regulate their selectivity for preprotein binding. Furthermore, the in vivo function of the two major Toc159 family members (atToc159 and atToc132) can be largely switched by swapping their A-domains in transgenic Arabidopsis thaliana. On the basis of these results, we propose that the A-domains of the Toc159 receptors are major determinants of distinct pathways for protein import into chloroplasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。