Ionogels Obtained by Thiol-ene Photopolymerization-Physicochemical Characterization and Application in Electrochemical Capacitors

硫醇-烯光聚合制备离子凝胶-物理化学表征及在电化学电容器中的应用

阅读:15
作者:Agnieszka Marcinkowska, Piotr Gajewski, Katarzyna Szcześniak, Mariola Sadej, Aneta Lewandowska

Abstract

Flexible ionogels with good mechanical properties were obtained in situ by thiol-ene photopolymerization of trimethylolpropane tris(3-mercaptopropionate) (TMPTP) and 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TATT) (with C=C: SH ratio 1:1) in four imidazolium ionic liquids (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide-EMImNTf2, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate-EMImOTf, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide-BMImNTf2, and 1-butyl-3-methylimidazolium trifluoromethanesulfonate-BMImOTf) used in the range 50 to 70 wt.%. The mechanical and electrochemical properties of obtained ionogels were examined. Ionogels with ionic liquids (ILs) with NTf2- anion are more puncture resistant than with OTf⁻ anion. Moreover, ionogels with the NTF2- anion have better electrochemical properties than those with the OTf⁻ anion. Although it should be noted that ionogels with the EMIm+ cation have a higher conductivity than the BMIm+. This is connected with intermolecular interactions between polymer matrix and IL related to the polarity of IL described by the Kamlet-Taft parameters. These parameters influence the morphology of the polymer matrix (as shown by the SEM micrograph), which is formed by interconnected polymer spheres.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。