Extracellular Vesicles from Ecklonia cava and Phlorotannin Promote Rejuvenation in Aged Skin

昆布属植物的细胞外囊泡和褐藻单宁促进老化皮肤再生

阅读:6
作者:Sosorburam Batsukh, Seyeon Oh, Ji Min Lee, Judy Hong Jin Joo, Kuk Hui Son, Kyunghee Byun

Abstract

Plant-derived extracellular vesicles (EVs) elicit diverse biological effects, including promoting skin health. EVs isolated from Ecklonia cava (EV-EC) carry heat shock protein 70 (HSP70), which inhibits key regulators such as TNF-α, MAPKs, and NF-κB, consequently downregulating matrix metalloproteinases (MMPs). Aging exacerbates oxidative stress, upregulating MAPK and NF-κB signaling and worsening extracellular matrix degradation in the skin. E. cava-derived phlorotannin (PT) mitigates MAPK and NF-κB signaling. We evaluated the impact of EV-EC and PT on skin rejuvenation using an in vitro keratinocyte senescence model and an in vivo aged-mouse model. Western blotting confirmed the presence of HSP70 in EV-EC. Treatment with EV-EC and PT in senescent keratinocytes increased HSP70 expression and decreased the expression of TNF-α, MAPK, NF-κB, activator protein-1 (AP-1), and MMPs. Oxidative stress was also reduced. Sequential treatment with PT and EV-EC (PT/EV-EC) yielded more significant results compared to individual treatments. The administration of PT/EV-EC to the back skin of aged mice mirrored the in vitro findings, resulting in increased collagen fiber accumulation and improved elasticity in the aged skin. Therefore, PT/EV-EC holds promise in promoting skin rejuvenation by increasing HSP70 expression, decreasing the expression of MMPs, and reducing oxidative stress in aged skin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。