Insight into the Roles of Metal Loading on CO2 Photocatalytic Reduction Behaviors of TiO2

金属负载对 TiO2 光催化还原 CO2 行为影响的探究

阅读:5
作者:Darika Permporn, Rattabal Khunphonoi, Jetsadakorn Wilamat, Pongtanawat Khemthong, Prae Chirawatkul, Teera Butburee, Weradesh Sangkhun, Kitirote Wantala, Nurak Grisdanurak, Jirapat Santatiwongchai, Pussana Hirunsit, Wantana Klysubun, Mark Daniel G de Luna

Abstract

The photocatalytic reduction of carbon dioxide (CO2) into value-added chemicals is considered to be a green and sustainable technology, and has recently gained considerable research interest. In this work, titanium dioxide (TiO2) supported Pt, Pd, Ni, and Cu catalysts were synthesized by photodeposition. The formation of various metal species on an anatase TiO2 surface, after ultraviolet (UV) light irradiation, was investigated insightfully by the X-ray absorption near edge structure (XANES) technique. CO2 reduction under UV-light irradiation at an ambient pressure was demonstrated. To gain an insight into the charge recombination rate during reduction, the catalysts were carefully investigated by the intensity modulated photocurrent spectroscopy (IMPS) and photoluminescence spectroscopy (PL). The catalytic behaviors of the catalysts were investigated by density functional theory using the self-consistent Hubbard U-correction (DFT+U) approach. In addition, Mott-Schottky measurement was employed to study the effect of energy band alignment of metal-semiconductor on CO2 photoreduction. Heterojunction formed at Pt-, Pd-, Ni-, and Cu-TiO2 interface has crucial roles on the charge recombination and the catalytic behaviors. Furthermore, it was found that Pt-TiO2 provides the highest methanol yield of 17.85 µmol/gcat/h, and CO as a minor product. According to the IMPS data, Pt-TiO2 has the best charge transfer ability, with the mean electron transit time of 4.513 µs. We believe that this extensive study on the junction between TiO2 could provide a profound understanding of catalytic behaviors, which will pave the way for rational designs of novel catalysts with improved photocatalytic performance for CO2 reduction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。