The Flow Dependent Adhesion of von Willebrand Factor (VWF)-A1 Functionalized Nanoparticles in an in Vitro Coronary Stenosis Model

血管性血友病因子 (VWF)-A1 功能化纳米粒子在体外冠状动脉狭窄模型中的流动依赖性粘附

阅读:11
作者:Yathreb Asaad, Mark Epshtein, Andrew Yee, Netanel Korin

Abstract

In arterial thrombosis, von Willebrand factor (VWF) bridges platelets to sites of vascular injury. The adhesive properties of VWF are controlled by its different domains, which may be engineered into ligands for targeting nanoparticles to vascular injuries. Here, we functionalized 200 nm polystyrene nanoparticles with the VWF-A1 domain and studied their spatial adhesion to collagen or collagen-VWF coated, real-sized coronary stenosis models under physiological flow. When VWF-A1 nano-particles (A1-NPs) were perfused through a 75% stenosis model coated with collagen-VWF, the particles preferentially adhered at the post stenotic region relative to the pre-stenosis region while much less adhesion was detected at the stenosis neck (~ 65-fold less). When infused through collagen-coated models or when the A1 coating density of nanoparticles was reduced by 100-fold, the enhanced adhesion at the post-stenotic site was abolished. In a 60% stenosis model, the adhesion of A1-NPs to collagen-VWF-coated models depended on the location examined within the stenosis. Altogether, our results indicate that VWF-A1 NPs exhibit a flow-structure dependent adhesion to VWF and illustrate the important role of studying cardiovascular nano-medicines in settings that closely model the size, geometry, and hemodynamics of pathological environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。