RAGE Signaling pathway in hippocampus dentate gyrus involved in GLT-1 decrease induced by chronic unpredictable stress in rats

大鼠海马齿状回RAGE信号通路参与慢性不可预见性应激导致GLT-1下降

阅读:5
作者:Fang Yang, Hong Wang, Huali Chen, Dongzhi Ran, Qiang Tang, Ping Weng, Yuzhuo Sun, Wengao Jiang

Abstract

A pivotal role of glutamatergic neurotransmission in the pathophysiology of major depressive disorder (MDD) has been supported in preclinical and clinical studies. Glutamate transporters are responsible for rapid uptake of glutamate to maintain glutamate homeostasis. Down-regulation of glutamate transporters has been reported in MDD patients and animal models. However, the mechanism for stress-induced modulation of glutamate transporter expression is poorly understood. Receptor for advanced glycosylation end products (RAGE), a member of immunoglobulin family, is found expressed widely in brain and play important roles in neuronal development, neurite growth, neurogenesis and neuroinflammation. Our study showed chronic unpredictable stress (CUS) induced depressive-like behaviors and reduced RAGE expression in hippocampus DG, CA1 and CA3 areas. The protein levels of GLT-1, p-CREB and p-p65 decreased in hippocampus DG as well. Knockdown of RAGE expression in hippocampus DG with RAGE shRNA lentivirus particles induced depressive-like behaviors. Meanwhile, the protein and mRNA levels of GLT-1 were significantly decreased as well as phosphorylation of CREB and p65. Neither CUS nor RAGE knockdown altered GLAST protein and mRNA levels. These findings suggested that RAGE/CREB-NF-κB signaling pathway in hippocampus DG involved in modulation of GLT-1 expression, which possibly contributed to the depressive-like behavior induced by CUS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。