Trehalose alleviates apoptosis by protecting the autophagy-lysosomal system in alveolar macrophages during human silicosis

海藻糖通过保护人矽肺期间肺泡巨噬细胞的自噬溶酶体系统减轻细胞凋亡

阅读:10
作者:Shiyi Tan, Shang Yang, Gang Chen, Li Zhu, Zhiqian Sun, Shi Chen

Background

Alveolar macrophages (AMs) are the primary targets of silicosis. Blockade of autophagy may aggravate the apoptosis of AMs. Trehalose (Tre), a transcription factor EB (TFEB) activator, may impact the autophagy-lysosomal system in AMs during silicosis. However, the mechanism by which Tre acts upon AMs in silicosis is unknown.

Conclusion

Our findings suggest that the restoration of autophagy-lysosomal function by Tre may be a potential protective strategy against silicosis.

Methods

We collected AMs from twenty male workers exposed to silica and divided them into observer and silicosis patient groups. AMs from the two groups were then exposed to Tre. Western blot was used to measure the expression of autophagy-associated proteins. Lysosomal-associated membrane protein 1 (LAMP1) expression was observed using immunofluorescence and western blot. Apoptosis of the AMs was detected by TUNEL assay and western blot.

Results

Tre induced localization of TFEB to the nucleus in the AMs of both groups. After Tre exposure, LAMP1 levels increased and LC3 levels decreased in the AMs of both groups, suggesting that Tre may increase the function of the autophagy-lysosomal system. The LC3-II/I ratio in the Tre-exposed AMs was lower than in the AMs not exposed to Tre. The LC3-II/I ratio in AMs subjected to Tre plus Bafilomycin (Baf) was higher than the ratio in cells exposed to Tre or Baf individually. Additionally, p62 levels decreased after Tre stimulation in the AMs of both groups. This indicates that Tre may accelerate the process of autophagic degradation. We also found decreased levels of cleaved caspase-3 after Tre treatment in the AMs of both groups. However, p-mTOR (Ser2448) and p-mTOR (Ser2481) levels did not change significantly after Tre treatment, suggesting that the mTOR signaling pathway was not affected by Tre treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。