A Family of Negative Regulators Targets the Committed Step of de Novo Fatty Acid Biosynthesis

一组负调控因子靶向脂肪酸从头生物合成的关键步骤

阅读:9
作者:Matthew J Salie, Ning Zhang, Veronika Lancikova, Dong Xu, Jay J Thelen

Abstract

Acetyl-CoA carboxylase (ACCase) catalyzes the committed step of de novo fatty acid biosynthesis. In prokaryotes, green algae, and most plants, this enzyme is a heteromeric complex requiring four different subunits for activity. The plant complex is recalcitrant to conventional purification schemes and hence the structure and composition of the full assembly have been unclear. In vivo coimmunoprecipitation using subunit-specific antibodies identified a novel family of proteins in Arabidopsis thaliana annotated as biotin/lipoyl attachment domain containing (BADC) proteins. Results from yeast two-hybrid and coexpression in Escherichia coli confirmed that all three BADC isoforms interact with the two biotin carboxyl carrier protein (BCCP) isoforms of Arabidopsis ACCase. These proteins resemble BCCP subunits but are not biotinylated due to a mutated biotinylation motif. We demonstrate that BADC proteins significantly inhibit ACCase activity in both E. coli and Arabidopsis. Targeted gene silencing of BADC isoform 1 in Arabidopsis significantly increased seed oil content when normalized to either mass or individual seed. We conclude the BADC proteins are ancestral BCCPs that gained a new function as negative regulators of ACCase after initial loss of the biotinylation motif. A functional model is proposed.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。