The cysteine proteinase inhibitor Z-Phe-Ala-CHN2 alters cell morphology and cell division activity of Trypanosoma brucei bloodstream forms in vivo

半胱氨酸蛋白酶抑制剂 Z-Phe-Ala-CHN2 改变布氏锥虫血流形态的细胞形态和细胞分裂活性

阅读:7
作者:Stefan Scory, York-Dieter Stierhof, Conor R Caffrey, Dietmar Steverding

Background

Current chemotherapy of human African trypanosomiasis or sleeping sickness relies on drugs developed decades ago, some of which show toxic side effects. One promising line of research towards the development of novel anti-trypanosomal drugs are small-molecule inhibitors of Trypanosoma brucei cysteine proteinases.

Conclusion

We suggest that inhibition of endogenous cysteine proteinases by Z-Phe-Ala-CHN2 depletes the parasite of essential nutrients necessary for DNA synthesis, which in turn, prevents progression of the cell cycle. This arrest then triggers differentiation of the long-slender into short-stumpy forms.

Results

In this study, we demonstrate that treatment of T. brucei-infected mice with the inhibitor, carbobenzoxy-phenylalanyl-alanine-diazomethyl ketone (Z-Phe-Ala-CHN2), alters parasite morphology and inhibits cell division. Following daily intra-peritoneal administration of 250 mg kg(-1) of Z-Phe-Ala-CHN2 on days three and four post infection (p.i.), stumpy-like forms with enlarged lysosomes were evident by day five p.i. In addition, trypanosomes exposed to the inhibitor had a 65% greater protein content than those from control mice. Also, in contrast to the normal 16% of parasites containing two kinetoplasts--a hallmark of active mitosis, only 4% of trypanosomes exposed to the inhibitor were actively dividing, indicating cell cycle-arrest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。