Enhancing PPARγ by HDAC inhibition reduces foam cell formation and atherosclerosis in ApoE deficient mice

通过抑制 HDAC 来增强 PPARγ 可减少 ApoE 缺陷小鼠的泡沫细胞形成和动脉粥样硬化

阅读:9
作者:Qi Gao, Ai Wei, Fang Chen, Xingren Chen, Wenwen Ding, Zhiquan Ding, Zhiwei Wu, Ronghui Du, Wangsen Cao

Abstract

Atherosclerosis (AS) is a risky cardiovascular disease with limited treatment options. Various pan or type-selective histone deacetylase (HDAC) inhibitors are reportedly atheroprotective against atherosclerosis (AS); however, the key effectors and the main cellular processes that mediate the protective effects remain poorly defined. Here, we report that PPARγ (Peroxisome proliferator-activated receptor gamma), a transcription factor actively involved in lipid metabolism with strong tissue protective and anti-inflammation properties, is a critical mediator of the anti-AS effects by HDAC inhibition. We showed that a well-known pan-HDAC inhibitor TSA (Trichostatin A) reduced foam cell formation of macrophages that is accompanied by a marked elevation of PPARγ and its downstream cholesterol efflux transporter ABCA1 (ATP-binding membrane cassette transport protein A1) and ABCG1. In an AS model of ApoE-/- mice fed on high-fat diet, TSA treatment alleviated AS lesions, similarly increased PPARγ and the downstream cholesterol transporters and mitigated the induction of inflammatory cytokine TNFα and IL-1β. Exploring the potential cause of PPARγ elevation revealed that TSA induced the acetylation of C/EBPα (CCAAT enhancer binding protein alpha), the upstream regulator of PPARγ, through which it increased PPARγ transactivation. More importantly, we generated a strain of PPARγ/ApoE double knockout mice and demonstrated that lack of PPARγ abrogated the protective effects of TSA on foam cell formation of peritoneal macrophages and the AS pathogenesis. Taken together, these results unravel that C/EBPα and PPARγ are the HDAC-sensitive components of an epigenetic signaling pathway mediating foam cell formation and AS development, and suggest that targeting C/EBPα/PPARγ axis by HDAC inhibitors possesses therapeutic potentials in retarding the progression of AS and the related cardiovascular diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。