Combinatorial Analysis of Circulating Biomarkers and Maternal Characteristics for Preeclampsia Prediction in the First and Third Trimesters in Asia

循环生物标志物和孕妇特征的组合分析在亚洲妊娠早期和晚期子痫预测中的应用

阅读:5
作者:Willie Lin, Sen-Wen Teng, Tzu-Yi Lin, Ronald Lovel, Hsin-Yu Sung, Wen-Ying Chang, Tang Bo-Chung Wu, Hsuan-Yu Chen, Le-Ming Wang, Steven W Shaw

Abstract

We aim to establish a prediction model for pregnancy outcomes through a combinatorial analysis of circulating biomarkers and maternal characteristics to effectively identify pregnant women with higher risks of preeclampsia in the first and third trimesters within the Asian population. A total of two hundred and twelve pregnant women were screened for preeclampsia through a multicenter study conducted in four recruiting centers in Taiwan from 2017 to 2020. In addition, serum levels of sFlt-1/PlGF ratio, miR-181a, miR-210 and miR-223 were measured and transformed into multiples of the median. We thus further developed statistically validated algorithmic models by designing combinations of different maternal characteristics and biomarker levels. Through the performance of the training cohort (0.848 AUC, 0.73−0.96 95% CI, 80% sensitivity, 85% specificity, p < 0.001) and the validation cohort (0.852 AUC, 0.74−0.98 95% CI, 75% sensitivity, 87% specificity, p < 0.001) from one hundred and fifty-two women with a combination of miR-210, miR-181a and BMI, we established a preeclampsia prediction model for the first trimester. We successfully identified pregnant women with higher risks of preeclampsia in the first and third trimesters in the Asian population using the established prediction models that utilized combinatorial analysis of circulating biomarkers and maternal characteristics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。