Untargeted metabolomic approach to study the serum metabolites in women with polycystic ovary syndrome

非靶向代谢组学方法研究多囊卵巢综合征女性血清代谢物

阅读:8
作者:Ying Yu, Panli Tan, Zhenchao Zhuang, Zhejiong Wang, Linchao Zhu, Ruyi Qiu, Huaxi Xu

Background

Polycystic ovary syndrome (PCOS) is not only a kind of common endocrine syndrome but also a metabolic disorder, which harms the reproductive system and the whole body metabolism of the PCOS patients worldwide. In this study, we aimed to investigate the differences in serum metabolic profiles of the patients with PCOS compared to the healthy controls. Material and

Conclusion

The present study characterized the difference of serum metabolites and related pathway profiles in PCOS patients, this finding hopes to provide potential metabolic markers for the prognosis and diagnosis of this disease.

Material and methods

31 PCOS patients and 31 matched healthy female controls were recruited in this study, the clinical characteristics data were recorded, the laboratory biochemical data were detected. Then, we utilized the metabolomics approach by UPLC-HRMS technology to study the serum metabolic changes between PCOS and controls.

Methods

31 PCOS patients and 31 matched healthy female controls were recruited in this study, the clinical characteristics data were recorded, the laboratory biochemical data were detected. Then, we utilized the metabolomics approach by UPLC-HRMS technology to study the serum metabolic changes between PCOS and controls.

Results

The metabolomics analysis showed that there were 68 downregulated and 78 upregulated metabolites in PCOS patients serum compared to those in the controls. These metabolites mainly belong to triacylglycerols, glycerophosphocholines, acylcarnitines, diacylglycerols, peptides, amino acids, glycerophosphoethanolamines and fatty acid. Pathway analysis showed that these metabolites were enriched in pathways including glycerophospholipid metabolism, fatty acid degradation, fatty acid biosynthesis, ether lipid metabolism, etc. Diagnosis value assessed by ROC analysis showed that the changed metabolites, including Leu-Ala/Ile-Ala, 3-(4-Hydroxyphenyl) propionic acid, Ile-Val/Leu-Val, Gly-Val/Val-Gly, aspartic acid, DG(34:2)_DG(16:0/18:2), DG(34:1)_DG(16:0/18:1), Phe-Trp, DG(36:1)_DG(18:0/18:1), Leu-Leu/Leu-Ile, had higher AUC values, indicated a significant role in PCOS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。