Modeling Metastatic Colonization in a Decellularized Organ Scaffold-Based Perfusion Bioreactor

在基于脱细胞器官支架的灌注生物反应器中模拟转移性定植

阅读:6
作者:Maria Rafaeva, Edward R Horton, Adina R D Jensen, Chris D Madsen, Raphael Reuten, Oliver Willacy, Christian B Brøchner, Thomas H Jensen, Kamilla Westarp Zornhagen, Marina Crespo, Dina S Grønseth, Sebastian R Nielsen, Manja Idorn, Per Thor Straten, Kristoffer Rohrberg, Iben Spanggaard, Martin Højgaar

Abstract

Metastatic cancer spread is responsible for most cancer-related deaths. To colonize a new organ, invading cells adapt to, and remodel, the local extracellular matrix (ECM), a network of proteins and proteoglycans underpinning all tissues, and a critical regulator of homeostasis and disease. However, there is a major lack in tools to study cancer cell behavior within native 3D ECM. Here, an in-house designed bioreactor, where mouse organ ECM scaffolds are perfused and populated with cells that are challenged to colonize it, is presented. Using a specialized bioreactor chamber, it is possible to monitor cell behavior microscopically (e.g., proliferation, migration) within the organ scaffold. Cancer cells in this system recapitulate cell signaling observed in vivo and remodel complex native ECM. Moreover, the bioreactors are compatible with co-culturing cell types of different genetic origin comprising the normal and tumor microenvironment. This degree of experimental flexibility in an organ-specific and 3D context, opens new possibilities to study cell-cell and cell-ECM interplay and to model diseases in a controllable organ-specific system ex vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。