Establishment of a non-alcoholic fatty liver disease model by high fat diet in adult zebrafish

高脂饮食建立成年斑马鱼非酒精性脂肪性肝病模型

阅读:5
作者:Xiang Li, Lei Zhou, Yuying Zheng, Taiping He, Honghui Guo, Jiangbin Li, Jingjing Zhang

Background

Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in recent years, but the pathogenesis is not fully understood. Therefore, it is important to establish an effective animal model for studying NAFLD.

Conclusion

Additional feeding of egg yolk powder to adult zebrafish for 30 consecutive days can mimic the pathology of human nonalcoholic fatty liver disease.

Methods

Adult zebrafish were fed a normal diet or a high-fat diet combined with egg yolk powder for 30 days. Body mass index (BMI) was measured to determine overall obesity. Serum lipids were measured using triglyceride (TG) and total cholesterol (TC) kits. Liver lipid deposition was detected by Oil Red O staining. Liver injury was assessed by measuring glutathione aminotransferase (AST) and glutamic acid aminotransferase (ALT) levels. Reactive oxygen species (ROS) and malondialdehyde (MDA) were used to evaluate oxidative damage. The level of inflammation was assessed by qRT-PCR for pro-inflammatory factors. H&E staining was used for pathological histology. Caspase-3 immunofluorescence measured apoptosis. Physiological disruption was assessed via RNA-seq analysis of genes at the transcriptional level and validated by qRT-PCR.

Results

The high-fat diet led to significant obesity in zebrafish, with elevated BMI, hepatic TC, and TG. Severe lipid deposition in the liver was observed by ORO and H&E staining, accompanied by massive steatosis and ballooning. Serum AST and ALT levels were elevated, and significant liver damage was observed. The antioxidant system in the body was severely imbalanced. Hepatocytes showed massive apoptosis. RNA-seq results indicated that several physiological processes, including endoplasmic reticulum stress, and glucolipid metabolism, were disrupted.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。