Involvement of the Metallothionein gene OsMT2b in Drought and Cadmium Ions Stress in Rice

金属硫蛋白基因 OsMT2b 与水稻干旱和镉离子胁迫的关系

阅读:7
作者:Yanxin Chen #, Ying He #, Yibin Pan, Yunyi Wen, Lili Zhu, Jieer Gao, Weiting Chen, Dagang Jiang

Abstract

Abiotic stress is one of the major factors restricting the production of rice (Oryza sativa L.). Developing rice varieties with dual abiotic stress tolerance is essential to ensure sustained rice production, which is necessary to illustrate the regulation mechanisms underlying dual stress tolerance. At present, only a few genes that regulate dual abiotic stress tolerance have been reported. In this study, we determined that the expression of OsMT2b was induced by both drought and Cd2+ stress. After stress treatment, OsMT2b-overexpression lines exhibited enhanced drought tolerance and better physiological performance in terms of relative water content and electrolyte leakage compared with wild-type (WT). Further analysis indicated that ROS levels were lower in OsMT2b-overexpression lines than in WT following stress treatment, suggesting that OsMT2b-overexpression lines had a stronger ability to scavenge ROS under stress. Reverse transcription-quantitative PCR (RT-qPCR) results demonstrated that under drought stress, OsMT2b influenced the expression of genes involved in ROS scavenging to enhance drought tolerance in rice. In addition, OsMT2b-overexpression plants displayed increased tolerance to Cd2+ stress, and physiological assessment results were consistent with the observed phenotypic improvements. Thus, enhancing ROS scavenging ability through OsMT2b overexpression is a novel strategy to boost rice tolerance to both drought and Cd2+ stress, offering a promising approach for developing rice germplasm with enhanced resistance to the abiotic stressors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。