Veratridine block of rat skeletal muscle Nav1.4 sodium channels in the inner vestibule

藜芦碱阻断大鼠骨骼肌内前庭 Nav1.4 钠通道

阅读:7
作者:Ging Kuo Wang, Sho-Ya Wang

Abstract

Veratridine (VTD) is an alkaloid toxin found in Liliaceae plants. VTD causes persistent opening of the voltage-gated Na+ channel and reduces its single-channel conductance by 75 %. The mechanisms for these different VTD actions are unknown. Recent reports indicate that the VTD receptor aligns closely with the local anaesthetic (LA) receptor, which resides at D1S6, D3S6 and D4S6 of the Na+ channel alpha-subunit. To study this alignment, we created a mutant with cysteine substitutions at three S6 residues (rNav1.4-N434C/L1280C/F1579C). Under voltage-clamp conditions, amitriptyline and bupivacaine remained as potent blockers of this mutant channel when expressed in human embryonic kidney cells, whereas VTD completely failed to cause persistent opening. Unexpectedly, VTD at 100 microM progressively blocked mutant currents by 90.4 +/- 1.6 % (n = 5), as assayed at 0.1 Hz for 15 min. This VTD block was reversed little during wash-off: approximately 70 % of mutant currents did not return in 30 min. An increase in channel opening either by repetitive pulses at 1 Hz or by the inhibition of the fast inactivation hastened the VTD block. Co-application of amitriptyline or bupivacaine, which targeted the LA receptor, prevented this VTD block. Our data suggest that (a) the VTD receptor and the LA receptor overlap extensively, (b) receptor-bound VTD lies in the inner vestibule, and (c) VTD blocks this mutant channel as a bona fide Na+ channel blocker. We propose that VTD likewise blocks the wild-type open Na+ channel, albeit partially, to decrease the unitary conductance and to stabilize the open conformation for persistent opening.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。