miR-185-5p / ATG101 axis alleviated intestinal barrier damage in intestinal ischemia reperfusion through autophagy

miR-185-5p / ATG101 轴通过自噬减轻肠缺血再灌注损伤肠屏障

阅读:5
作者:Wendong Chen, Li Ma, Jianlin Shao, Chun Bi, Junjie Li, Wei Yang

Conclusion

Knockdown of miR-185-5p enhanced autophagy and alleviated II/R intestinal barrier damage by targeting ATG101.

Methods

Caco-2 cells was induced by oxygen-glucose deprivation/reoxygenation (OGD/R) to establish II/R model. The superior mesenteric artery of C57BL/6 mice was clamped for 45 min and then subjected to reperfusion for 4 h for the establishment of II/R mice model. miR-185-5p mimic, miR-185-5p inhibitor, pcDNA-autophagy-related 101 (ATG101) were respectively transfected into Caco-2 cells. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to assess miR-185-5p expression. Western blot detected the level of ATG101 and tight junction-associated proteins ZO1, Occludin, E-cadherin, β-catenin, as well as autophagy markers ATG5, ATG12, LC3Ⅰ/Ⅱ, Beclin1 and SQSTM1. Transepithelial electrical resistance (TEER) values was detected by a resistance meter. FITC-Dextran was performed to measure cell permeability. 5-ethynyl-2'-deoxyuridine (EDU) staining measured cell proliferation. Transmission electron microscope was conducted to observe autophagosomes. Hematoxylin & eosin (H&E) staining observed the damage of mice intestinal. Immunohistochemistry (IHC) measured the percentage of ki67 positive cells. TdT-mediated dUTP nick-end labeling (TUNEL) assay assessed cell apoptosis in intestinal tissues of II/R. Dual-luciferase assay verified the targeting relationship between miR-185-5p and ATG101.

Objective

Intestinal ischemia-reperfusion (II/R) is a common pathological injury in clinic, and the systemic inflammatory response it causes will lead to multiple organ damage and functional failure. miR-185-5p has been reported to be a regulator of inflammatory response and autophagy, but whether it participates in the regulation of autophagy in II/R is still unclear. Therefore, we aimed to explore the mechanism of miR-185-5p regulating intestinal barrier injury in (II/R).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。