Tumor Microenvironment Based on Extracellular Matrix Hydrogels for On-Chip Drug Screening

基于细胞外基质水凝胶的肿瘤微环境用于芯片药物筛选

阅读:5
作者:Xiaoyan Liu, Jinxiong Cheng, Yingcan Zhao

Abstract

Recent advances in three-dimensional (3D) culturing and nanotechnology offer promising pathways to overcome the limitations of drug screening, particularly for tumors like neuroblastoma. In this study, we develop a high-throughput microfluidic chip that integrates a concentration gradient generator (CGG) with a 3D co-culture system, constructing the vascularized microenvironment in tumors by co-culturing neuroblastoma (SY5Y cell line) and human brain microvascular endothelial cells (HBMVECs) within a decellularized extracellular matrix (dECM) hydrogels. The automated platform enhances the simulation of the tumor microenvironment and allows for the precise control of the concentrations of nanomedicines, which is crucial for evaluating therapeutic efficacy. The findings demonstrate that the high-throughput platform can significantly accelerate drug discovery. It efficiently screens and analyzes drug interactions in a biologically relevant setting, potentially revolutionizing the drug screening process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。