Using the Assembly Time as a Tool to Control the Surface Morphology and Separation Performance of Membranes with a Tannic Acid-Fe3+ Selective Layer

利用组装时间控制单宁酸-Fe3+选择性膜的表面形貌和分离性能

阅读:7
作者:Hluf Hailu Kinfu, Md Mushfequr Rahman, Erik S Schneider, Nicolás Cevallos-Cueva, Volker Abetz

Abstract

Thin-film composite (TFC) membranes containing a metal-polyphenol network (MPN)-based selective layer were fabricated on a porous polyacrylonitrile support. The MPN layer was formed through coordination-based self-assembly between plant-based tannic acid (TA) and an Fe3+ ion. For the first time, we demonstrate that TFC membranes containing TA-Fe3+ selective layers can separate small organic solutes in aqueous media from equimolar mixtures of solutes. The effect of the assembly time on the characteristics and performance of the fabricated selective layer was investigated. An increase in the assembly time led to the formation of selective layers with smaller effective pore sizes. The tannic acid-Fe3+ selective layer exhibited a low rejection towards neutral solutes riboflavin and poly(ethylene glycol) while high rejections were observed for anionic dyes of orange II and naphthol green B. Permeation selectivities in the range of 2-27 were achieved between neutral and charged dyes in both single- and mixed-solute experiments, indicating the significant role of Donnan exclusion and the charge-selective nature of the membranes. The rejection efficiency improved with an increasing assembly time. Overall, this study demonstrates that the assembly time is a vital casting parameter for controlling the permeance, rejection and selectivity of thin-film composite membranes with a tannic acid-Fe3+ selective layer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。