Nanocarriers Based on Gold Nanoparticles for Epigallocatechin Gallate Delivery in Cancer Cells

基于金纳米粒子的纳米载体用于癌细胞中表没食子儿茶素没食子酸酯的递送

阅读:5
作者:Lídia Cunha, Sílvia Castro Coelho, Maria do Carmo Pereira, Manuel A N Coelho

Abstract

Gold nanoparticles (AuNPs) are inorganic and biocompatible nanovehicles capable of conjugating biomolecules to enhance their efficacy in cancer treatment. The high and reactive surface area provides good advantages for conjugating active compounds. Two approaches were developed in this work to improve the Epigallocatechin-3-gallate (EGCG) antioxidant efficacy. AuNPs were synthesized by reducing gold salt with chitosan. One other nanosystem was developed by functionalizing AuNPs with cysteamine using the Turkevitch method. The physico-chemical characterization of EGCG conjugated in the two nanosystems-based gold nanoparticles was achieved. The in vitro toxic effect induced by the nanoconjugates was evaluated in pancreatic cancer cells, showing that encapsulated EGCG keeps its antioxidant activity and decreasing the BxPC3 cell growth. A significant cell growth inhibition was observed in 50% with EGCG concentrations in the range of 2.2 and 3.7 μM in EGCG-ChAuNPs and EGCG-Cyst-AuNPs nanoconjugates, respectively. The EGCG alone had to be present at 23 μM to induce the same cytotoxicity response. Caspase-3 activity assay demonstrated that the conjugation of EGCG induces an enhancement of BxPC3 apoptosis compared with EGCG alone. In conclusion, AuNPs complexes can be used as delivery carriers to increase EGCG antioxidant activity in cancer tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。