Patterning of Fibroblast and Matrix Anisotropy within 3D Confinement is Driven by the Cytoskeleton

细胞骨架驱动成纤维细胞和基质在三维限制内的各向异性模式化

阅读:5
作者:Janna V Serbo, Scot Kuo, Shawna Lewis, Matthew Lehmann, Jiuru Li, David H Gracias, Lewis H Romer

Abstract

Effects of 3D confinement on cellular growth and matrix assembly are important in tissue engineering, developmental biology, and regenerative medicine. Polydimethylsiloxane wells with varying anisotropy are microfabicated using soft-lithography. Microcontact printing of bovine serum albumin is used to block cell adhesion to surfaces between wells. The orientations of fibroblast stress fibers, microtubules, and fibronectin fibrils are examined 1 day after cell seeding using laser scanning confocal microscopy, and anisotropy is quantified using a custom autocorrelation analysis. Actin, microtubules, and fibronectin exhibit higher anisotropy coefficients for cells grown in rectangular wells with aspect ratios of 1:4 and 1:8, as compared to those in wells with lower aspect ratios or in square wells. The effects of disabling individual cytoskeletal components on fibroblast responses to anisotropy are then tested by applying actin or microtubule polymerization inhibitors, Rho kinase inhibitor, or by siRNA-mediated knockdown of AXL or cofilin-1. Latrunculin A decreases cytoskeletal and matrix anisotropy, nocodazole ablates both, and Y27632 mutes cellular polarity while decreasing matrix anisotropy. AXL siRNA knockdown has little effect, as does siRNA knockdown of cofilin-1. These data identify several specific cytoskeletal strategies as targets for the manipulation of anisotropy in 3D tissue constructs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。