The effect of caffeic acid on tendon healing in rats with an Achilles tendon injury model

咖啡酸对跟腱损伤模型大鼠肌腱愈合的影响

阅读:9
作者:Ahmet Yurteri, Numan Mercan, Murat Çelik, Fatih Doğar, Mehmet Kılıç, Ahmet Yıldırım

Conclusion

The caffeic acid contributed positively to tendon healing histopathologically and biomechanically in rats with an Achilles tendon injury model.

Methods

Twenty male Wistar-albino rats were used in this study. The rats were divided into two groups as the experimental group and control group. All rats underwent a bilateral achillotomy injury model and then surgical repair. Postoperatively, for four weeks, the experimental group was given intraperitoneal caffeic acid (100 mg/kg/day suspended in saline), while the control group was given only intraperitoneal saline. At the end of four weeks, after sacrificing each rat, right Achilles tendons were subjected to biomechanical analysis and the Achilles tendons were subjected to histopathological analysis. Bonar and Movin scores were used for histopathological analysis. In biomechanical analysis, tensile test was applied to Achilles tendons until rupture. For each tendon, failure load, displacement, cross-sectional area, maximum energy, total energy, length, stiffness, ultimate stress and strain parameters were recorded.

Results

According to Bonar and Movin scoring, the experimental group had lower scoring values than the control group (p=0.002 and p=0.002, respectively). Bonar scoring parameters were analyzed separately. Vascularity, collagen, and ground substance scores were lower in the experimental group compared to the control group (p=0.001, p=0.003, and p=0.047, respectively). No significant difference was found for tenocyte (p=0.064). In biomechanical analysis, failure load, displacement, ultimate stress, strain, and stiffness values were found to be higher in the experimental group compared to the control group (p=0.049, p=0.005, p=0.028, p=0.021, and p=0.049, respectively).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。