Engineering Lipid Spherulites for the Sustained Release of Highly Dosed Small Hydrophilic Compounds

工程脂质球粒用于缓释高剂量亲水小分子化合物

阅读:5
作者:Elita Montanari, Hanna Krupke, Jean-Christophe Leroux

Abstract

Currently, there is a lack of parenteral sustained release formulations for the delivery of highly dosed small hydrophilic drugs. Therefore, parenteral lipid spherulites are engineered capable of entrapping large amounts of such compounds and spontaneously releasing them in a sustained fashion. A library of spherulites is prepared with a simple green process, using phosphatidylcholine (PC) and/or phosphatidylethanolamine (PE), nonionic surfactants and water. The vesicle formulations exhibiting appropriate size distribution and morphology are selected and loaded with 4,6-di-O-(methoxy-diethyleneglycol)-myo-inositol-1,2,3,5-tetrakis(phosphate), ((OEG2 )2 -IP4), an inositol phosphate derivative currently under clinical evaluation for the treatment of aortic valve stenosis. The loading efficiency of spherulites is up to 12.5-fold higher than that of liposomes produced with the same materials. While the PC-containing vesicles showed high stability, the PE spherulites gradually lost their multilayer organization upon dilution, triggering the active pharmaceutical ingredient (API) release over time. In vitro experiments and pharmacokinetic studies in rats demonstrated the ability of PE spherulites to increase the systemic exposure of (OEG2 )2 -IP4 up to 3.1-fold after subcutaneous injection, and to completely release their payload within 3-4 d. In conclusion, PE spherulites represent a promising lipid platform for the extravascular parenteral administration of highly dosed small hydrophilic drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。