Benchtop-compatible sample processing workflow for proteome profiling of < 100 mammalian cells

适用于台式样品处理工作流程,用于对少于 100 个哺乳动物细胞进行蛋白质组分析

阅读:8
作者:Kerui Xu, Yiran Liang, Paul D Piehowski, Maowei Dou, Kaitlynn C Schwarz, Rui Zhao, Ryan L Sontag, Ronald J Moore, Ying Zhu, Ryan T Kelly

Abstract

Extending proteomics to smaller samples can enable the mapping of protein expression across tissues with high spatial resolution and can reveal sub-group heterogeneity. However, despite the continually improving sensitivity of LC-MS instrumentation, in-depth profiling of samples containing low-nanogram amounts of protein has remained challenging due to analyte losses incurred during preparation and analysis. To address this, we recently developed nanodroplet processing in one pot for trace samples (nanoPOTS), a robotic/microfluidic platform that generates ready-to-analyze peptides from cellular material in ~200 nL droplets with greatly reduced sample losses. In combination with ultrasensitive LC-MS, nanoPOTS has enabled &gt;3000 proteins to be confidently identified from as few as 10 cultured human cells and ~700 proteins from single cells. However, the nanoPOTS platform requires a highly skilled operator and a costly in-house-built robotic nanopipetting instrument. In this work, we sought to evaluate the extent to which the benefits of nanodroplet processing could be preserved when upscaling reagent dispensing volumes by a factor of 10 to those addressable by commercial micropipette. We characterized the resulting platform, termed microdroplet processing in one pot for trace samples (μPOTS), for the analysis of as few as ~25 cultured HeLa cells (4 ng total protein) or 50 μm square mouse liver tissue thin sections and found that ~1800 and ~1200 unique proteins were respectively identified with high reproducibility. The reduced equipment requirements should facilitate broad dissemination of nanoproteomics workflows by obviating the need for a capital-intensive custom liquid handling system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。