Voltage-dependent inactivation of L-type Ca2+ currents in guinea-pig ventricular myocytes

豚鼠心室肌细胞中 L 型 Ca2+ 电流的电压依赖性失活

阅读:11
作者:Ian Findlay

Abstract

The objective of this study was to describe the kinetics of voltage-dependent inactivation of native cardiac L-type Ca(2+) currents. Whole-cell currents were recorded from guinea-pig isolated ventricular myocytes. Voltage-dependent inactivation was separated from Ca(2+)-dependent inactivation by replacing extracellular Ca(2+) with Mg(2+) and recording outward currents through Ca(2+) channels. Voltage-dependent inactivation accelerated from slow monophasic decay at -30 mV to maximal rapid biphasic decay at +20 mV. Maximal voltage-dependent inactivation occurred with tau(f) approximately equal 30 ms and tau(s) approximately equal 300 ms, the fast component of decay accounted for 70 % of the current amplitude. In basal conditions Ca(2+) current availability was sigmoid. Isoproterenol (isoprenaline) evoked a large increase in a time-independent component of the Ca(2+) current which also increased with depolarisation. This was responsible for the apparent recovery of Ca(2+) channel current availability at positive membrane potentials and thus a U-shaped availability-voltage (A-V) relationship. It is concluded that beta-adrenergic stimulation altered the reaction of native cardiac L-type Ca(2+) channels to membrane voltage. In basal conditions, voltage accelerated inactivation. In isoproterenol, voltage could also reduce inactivation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。