Strategies for In Vivo Screening and Mitigation of Hepatotoxicity Associated with Antisense Drugs

反义药物体内筛选和缓解肝毒性的策略

阅读:7
作者:Piotr J Kamola, Klio Maratou, Paul A Wilson, Kay Rush, Tanya Mullaney, Tom McKevitt, Paula Evans, Jim Ridings, Probash Chowdhury, Aude Roulois, Ann Fairchild, Sean McCawley, Karen Cartwright, Nigel J Gooderham, Timothy W Gant, Kitty Moores, Stephen A Hughes, Mark R Edbrooke, Kenneth Clark, Joel D Pa

Abstract

Antisense oligonucleotide (ASO) gapmers downregulate gene expression by inducing enzyme-dependent degradation of targeted RNA and represent a promising therapeutic platform for addressing previously undruggable genes. Unfortunately, their therapeutic application, particularly that of the more potent chemistries (e.g., locked-nucleic-acid-containing gapmers), has been hampered by their frequent hepatoxicity, which could be driven by hybridization-mediated interactions. An early de-risking of this liability is a crucial component of developing safe, ASO-based drugs. To rank ASOs based on their effect on the liver, we have developed an acute screen in the mouse that can be applied early in the drug development cycle. A single-dose (3-day) screen with streamlined endpoints (i.e., plasma transaminase levels and liver weights) was observed to be predictive of ASO hepatotoxicity ranking established based on a repeat-dose (15 day) study. Furthermore, to study the underlying mechanisms of liver toxicity, we applied transcriptome profiling and pathway analyses and show that adverse in vivo liver phenotypes correlate with the number of potent, hybridization-mediated off-target effects (OTEs). We propose that a combination of in silico OTE predictions, streamlined in vivo hepatotoxicity screening, and a transcriptome-wide selectivity screen is a valid approach to identifying and progressing safer compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。