Diverse sensitivities of TRPA1 from different mosquito species to thermal and chemical stimuli

不同蚊子物种的 TRPA1 对热刺激和化学刺激有不同的敏感性

阅读:7
作者:Tianbang Li, Claire T Saito, Tomoyuki Hikitsuchi, Yoshihiro Inoguchi, Honami Mitsuishi, Shigeru Saito, Makoto Tominaga0

Abstract

Temperature and odors profoundly affect the behavior of animals. Transient receptor potential channel, subfamily A, member 1 (TRPA1) functions as a polymodal nociceptor for sensing both vital environmental cues in insects. Mosquitoes are recognized as disease vectors, and many efforts have been devoted to investigations of their host-seeking behaviors and repellents. However, the physiological characteristics of mosquito TRPA1 have not been systematically studied. We identified multiple alternative splice variants of the TrpA1 gene from Anopheles gambiae, Anopheles stephensi, Aedes aegypti and Culex pipiens pallens mosquitoes. And we performed comparative analyses of the responses of mosquito TRPA1s to heat or chemical stimuli with calcium-imaging and whole-cell patch-clamp methods. Comparison of TRPA1 among four mosquito species from different thermal niches revealed that TRPA1 of Culex pipiens pallens inhabiting the temperate zone had a lower temperature threshold for heat-evoked activation, which was supported by the in vivo heat-avoidance test. Notably, the chemosensitivity of mosquito TRPA1 channels revealed differences not only between variants but also among species. Moreover, we discovered three novel mosquito TRPA1 agonists. Thermal niches selection and evolutionary trajectories significantly affect the functional properties of mosquito TRPA1, which represents a hallmark of the behaviors that may permit the design of improved mosquito control methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。