Dopaminergic Regulation of Nucleus Accumbens Cholinergic Interneurons Demarcates Susceptibility to Cocaine Addiction

伏隔核胆碱能中间神经元的多巴胺能调节决定可卡因成瘾的易感性

阅读:5
作者:Joo Han Lee, Efrain A Ribeiro, Jeongseop Kim, Bumjin Ko, Hope Kronman, Yun Ha Jeong, Jong Kyoung Kim, Patricia H Janak, Eric J Nestler, Ja Wook Koo, Joung-Hun Kim

Background

Cholinergic interneurons (ChINs) in the nucleus accumbens (NAc) play critical roles in processing information related to reward. However, the contribution of ChINs to the emergence of addiction-like behaviors and its underlying molecular mechanisms remain elusive.

Conclusions

These findings provide a molecular mechanism for dopaminergic control of NAc ChINs that can control the susceptibility to cocaine-seeking behavior.

Methods

We employed cocaine self-administration to identify two mouse subpopulations: susceptible and resilient to cocaine seeking. We compared the subpopulations for physiological responses with single-unit recording of NAc ChINs, and for gene expression levels with RNA sequencing of ChINs sorted using fluorescence-activated cell sorting. To provide evidence for a causal relationship, we manipulated the expression level of dopamine D2 receptor (DRD2) in ChINs in a cell type-specific manner. Using optogenetic activation combined with a double whole-cell recording, the effect of ChIN-specific DRD2 manipulation on each synaptic input was assessed in NAc medium spiny neurons in a pathway-specific manner.

Results

Susceptible mice showed higher levels of nosepoke responses under a progressive ratio schedule, and impairment in extinction and punishment procedures. DRD2 was highly abundant in the NAc ChINs of susceptible mice. Elevated abundance of DRD2 in NAc ChINs was sufficient and necessary to express high cocaine motivation, putatively through reduction of ChIN activity during cocaine exposure. DRD2 overexpression in ChINs mimicked cocaine-induced effects on the dendritic spine density and the ratios of excitatory inputs between two distinct medium spiny neuron cell types, while DRD2 depletion precluded cocaine-induced synaptic plasticity. Conclusions: These findings provide a molecular mechanism for dopaminergic control of NAc ChINs that can control the susceptibility to cocaine-seeking behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。