Induction of nuclear factor-κB responses by the S100A9 protein is Toll-like receptor-4-dependent

S100A9 蛋白诱导的核因子 κB 反应依赖于 Toll 样受体 4

阅读:12
作者:Matteo Riva, Eva Källberg, Per Björk, Dora Hancz, Thomas Vogl, Johannes Roth, Fredrik Ivars, Tomas Leanderson

Abstract

Interactions between danger-associated molecular patterns (DAMP) and pathogen-associated molecular patterns (PAMP) and pattern recognition receptors such as Toll-like receptors (TLRs) are critical for the regulation of the inflammatory process via activation of nuclear factor-κB (NF-κB) and cytokine secretion. In this report, we investigated the capacity of lipopolysaccharide (LPS) -free S100A9 (DAMP) protein to activate human and mouse cells compared with lipoprotein-free LPS (PAMP). First, we showed that LPS and S100A9 were able to increase NF-κB activity followed by increased cytokine and nitric oxide (NO) secretion both in human THP-1 cells and in mouse bone marrow-derived dendritic cells. Surprisingly, although S100A9 triggered a weaker cytokine response than LPS, we found that S100A9 more potently induced IκBα degradation and hence NF-κB activation. Both the S100A9-induced response and the LPS-induced response were completely absent in TLR4 knockout mice, whereas it was only slightly affected in RAGE knockout mice. Also, we showed that LPS and S100A9 NF-κB induction were strongly reduced in the presence of specific inhibitors of TLR-signalling. Chloroquine reduced S100A9 but not LPS signalling, indicating that S100A9 may need to be internalized to be fully active as a TLR4 inducer. This was confirmed using A488-labelled S100A9 that was internalized in THP-1 cells, showing a raise in fluorescence after 30 min at 37°. Chloroquine treatment significantly reduced the fluorescence. In summary, our data indicate that both human and mouse S100A9 are TLR4 agonists. Importantly, S100A9 induced stronger NF-κB activation albeit weaker cytokine secretion than LPS, suggesting that S100A9 and LPS activated NF-κB in a qualitatively distinct manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。