Long-term oral kinetin does not protect against α-synuclein-induced neurodegeneration in rodent models of Parkinson's disease

长期口服激动素无法预防帕金森病啮齿动物模型中 α-突触核蛋白诱发的神经变性

阅读:7
作者:Adam L Orr, Florentine U Rutaganira, Daniel de Roulet, Eric J Huang, Nicholas T Hertz, Kevan M Shokat, Ken Nakamura

Abstract

Mutations in the mitochondrial kinase PTEN-induced putative kinase 1 (PINK1) cause Parkinson's disease (PD), likely by disrupting PINK1's kinase activity. Although the mechanism(s) underlying how this loss of activity causes degeneration remains unclear, increasing PINK1 activity may therapeutically benefit some forms of PD. However, we must first learn whether restoring PINK1 function prevents degeneration in patients harboring PINK1 mutations, or whether boosting PINK1 function can offer protection in more common causes of PD. To test these hypotheses in preclinical rodent models of PD, we used kinetin triphosphate, a small-molecule that activates both wild-type and mutant forms of PINK1, which affects mitochondrial function and protects neural cells in culture. We chronically fed kinetin, the precursor of kinetin triphosphate, to PINK1-null rats in which PINK1 was reintroduced into their midbrain, and also to rodent models overexpressing α-synuclein. The highest tolerated dose of oral kinetin increased brain levels of kinetin for up to 6 months, without adversely affecting the survival of nigrostriatal dopamine neurons. However, there was no degeneration of midbrain dopamine neurons lacking PINK1, which precluded an assessment of neuroprotection and raised questions about the robustness of the PINK1 KO rat model of PD. In two rodent models of α-synuclein-induced toxicity, boosting PINK1 activity with oral kinetin provided no protective effects. Our results suggest that oral kinetin is unlikely to protect against α-synuclein toxicity, and thus fail to provide evidence that kinetin will protect in sporadic models of PD. Kinetin may protect in cases of PINK1 deficiency, but this possibility requires a more robust PINK1 KO model that can be validated by proof-of-principle genetic correction in adult animals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。