Gnathodiaphyseal dysplasia is not recapitulated in a respective mouse model carrying a mutation of the Ano5 gene

在携带 Ano5 基因突变的相应小鼠模型中,颌骨发育不良不会重现

阅读:5
作者:Tim Rolvien, Osman Avci, Simon von Kroge, Till Koehne, Stefan Selbert, Stephan Sonntag, Doron Shmerling, Uwe Kornak, Ralf Oheim, Michael Amling, Thorsten Schinke, Timur Alexander Yorgan

Abstract

Mutations in the gene ANO5, encoding for the transmembrane protein Anoctamin 5 (Ano5), have been identified to cause gnathodiaphyseal dysplasia (GDD) in humans, a skeletal disorder characterized by sclerosis of tubular bones, increased fracture risk and fibro-osseous lesions of the jawbones. To better understand the pathomechanism of GDD we have generated via Crispr/CAS9 gene editing a mouse model harboring the murine equivalent (Ano5 p.T491F) of a GDD-causing ANO5 mutation identified in a previously reported patient. Skeletal phenotyping by contact radiography, μCT and undecalcified histomorphometry was performed in male mice, heterozygous and homozygous for the mutation, at the ages of 12 and 24 weeks. These mice did not display alterations of skeletal microarchitecture or mandible morphology. The results were confirmed in female mice and animals derived from a second, independent clone. Finally, no skeletal phenotype was observed in mice lacking ~40% of their Ano5 gene due to a frameshift mutation. Therefore, our results indicate that Ano5 is dispensable for bone homeostasis in mice, at least under unchallenged conditions, and that these animals may not present the most adequate model to study the physiological role of Anoctamin 5.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。