A Novel Mitochondrial Inhibitor Blocks MAPK Pathway and Overcomes MAPK Inhibitor Resistance in Melanoma

新型线粒体抑制剂阻断 MAPK 通路并克服黑色素瘤中的 MAPK 抑制剂耐药性

阅读:5
作者:Y N Vashisht Gopal, Seth Gammon, Rishika Prasad, Barbara Knighton, Federica Pisaneschi, Jason Roszik, Ningping Feng, Sarah Johnson, Snigdha Pramanik, Jessica Sudderth, Dawen Sui, Courtney Hudgens, Grant M Fischer, Wanleng Deng, Alexandre Reuben, Weiyi Peng, Jian Wang, Jennifer L McQuade, Michael T T

Conclusions

Targeting OxPhos with OPi has significant antitumor activity in MAPKi-resistant, BRAF-mutant melanomas, and merits further clinical investigation as a potential new strategy to overcome intrinsic and acquired resistance to MAPKi in patients.

Purpose

The purpose of this study is to determine if inhibition of mitochondrial oxidative phosphorylation (OxPhos) is an effective strategy against MAPK pathway inhibitor (MAPKi)-resistant BRAF-mutant melanomas.Experimental Design: The antimelanoma activity of IACS-010759 (OPi), a novel OxPhos complex I inhibitor, was evaluated in vitro and in vivo. Mechanistic studies and predictors of response were evaluated using molecularly and metabolically stratified melanoma cell lines. 13C-labeling and targeted metabolomics were used to evaluate the effect of OPi on cellular energy utilization. OxPhos inhibition in vivo was evaluated noninvasively by [18F]-fluoroazomycin arabinoside (FAZA) PET imaging.

Results

OPi potently inhibited OxPhos and the in vivo growth of multiple MAPKi-resistant BRAF-mutant melanoma models with high OxPhos at well-tolerated doses. In vivo tumor regression with single-agent OPi treatment correlated with inhibition of both MAPK and mTOR complex I activity. Unexpectedly, antitumor activity was not improved by combined treatment with MAPKi in vitro or in vivo. Signaling and growth-inhibitory effects were mediated by LKB1-AMPK axis, and proportional to AMPK activation. OPi increased glucose incorporation into glycolysis, inhibited glucose and glutamine incorporation into the mitochondrial tricarboxylic acid cycle, and decreased cellular nucleotide and amino acid pools. Early changes in [18F]-FAZA PET uptake in vivo, and the degree of mTORC1 pathway inhibition in vitro, correlated with efficacy. Conclusions: Targeting OxPhos with OPi has significant antitumor activity in MAPKi-resistant, BRAF-mutant melanomas, and merits further clinical investigation as a potential new strategy to overcome intrinsic and acquired resistance to MAPKi in patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。