Estimating the sensory-associated metabolites profiling of matcha based on PDO attributes as elucidated by NIRS and MS approaches

通过 NIRS 和 MS 方法阐明 PDO 属性,评估抹茶感官相关代谢物特征

阅读:6
作者:Yan Chen, Xiaoyao Xie, Zhirui Wen, Yamin Zuo, Zhiwen Bai, Qing Wu

Abstract

Matcha has been globally valued by consumers for its distinctive fragrance and flavor since ancient times. Currently, the protected designation of origin (PDO) certified matcha, characterized by unique sensory attributes, has garnered renewed interest from consumers and the industry. Given the challenges associated with assessing sensory perceptions, the origin of PDO-certified matcha samples from Guizhou was determined using NIRS and LC-MS platforms. Notably, the accuracy of our established attribute models, based on informative wavelengths selected by the CARS-PLS method, exceeds 0.9 for five sensory attributes, particularly the particle homogeneity attribute (with a validation correlation coefficient of 0.9668). Moreover, an LC-MS method was utilized to analyze non-target matcha metabolites to identify the primary flavor compounds associated with each flavor attribute and to pinpoint the key constituents responsible for variations in grade and flavor intensity. Additionally, high three-way intercorrelations between descriptive sensory attributes, metabolites, and the selected informative wavelengths were observed through network analysis, with correlation coefficients calculated to quantify these relationships. In this research, the integration of matcha chemical composition and sensory panel data was utilized to develop predictive models for assessing the flavor profile of matcha based on its chemical properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。