An Ancestral Allele of Pyrroline-5-carboxylate synthase1 Promotes Proline Accumulation and Drought Adaptation in Cultivated Barley

吡咯烷-5-羧酸合酶1的祖先等位基因促进栽培大麦中脯氨酸的积累和干旱适应

阅读:6
作者:Shumaila Muzammil, Asis Shrestha, Said Dadshani, Klaus Pillen, Shahid Siddique, Jens Léon, Ali Ahmad Naz

Abstract

Water scarcity is a critical threat to global crop production. Here, we used the natural diversity of barley (Hordeum vulgare) to dissect the genetic control of proline (Pro) mediated drought stress adaptation. Genetic mapping and positional cloning of a major drought-inducible quantitative trait locus (QPro.S42-1H) revealed unique allelic variation in pyrroline-5-carboxylate synthase (P5cs1) between the cultivated cultivar Scarlett (ssp. vulgare) and the wild barley accession ISR42-8 (ssp. spontaneum). The putative causative mutations were located in the promoter of P5cs1 across the DNA binding motifs for abscisic acid-responsive element binding transcription factors. Introgression line (IL) S42IL-143 carrying the wild allele of P5cs1 showed significant up-regulation of P5cs1 expression compared to Scarlett, which was consistent with variation in Pro accumulation under drought. Next, we transiently expressed promoter::reporter constructs of ISR42-8 and Scarlett alleles in Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. GUS expression analysis showed a significantly higher activation of the ISR42-8 promoter compared to Scarlett upon abscisic acid treatment. Notably, the ISR42-8 promoter activity was impaired in protoplasts isolated from the loss-of-function abf1abf2abf3abf4 quadruple mutant. A series of phenotypic evaluations demonstrated that S42IL-143 maintained leaf water content and photosynthetic activity longer than Scarlett under drought. These findings suggest that the ancestral variant of P5cs1 has the potential for drought tolerance and understanding drought physiology of barley and related crops.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。