Functional contributions of glutamate transporters at the parallel fibre to Purkinje neuron synapse-relevance for the progression of cerebellar ataxia

平行纤维中谷氨酸转运体对浦肯野神经元突触的功能贡献与小脑共济失调进展的相关性

阅读:6
作者:Emmet M Power, Ruth M Empson

Background

Rapid uptake of glutamate by neuronal and glial glutamate transporters (EAATs, a family of excitatory amino acid transporters) is critical for shaping synaptic responses and for preventing excitotoxicity. Two of these transporters, EAAT4 in Purkinje neurons (PN) and EAAT1 in Bergmann glia are both enriched within the cerebellum and altered in a variety of human ataxias.

Conclusions

Our findings indicate that reduced glutamate transporter activity, as occurs in the early stages of some forms of human cerebellar ataxias, excessively excites PNs and disrupts the timing of their output. Our findings raise the possibility that sustaining cerebellar glutamate uptake may provide a therapeutic approach to prevent this disruption and the glutamate excitotoxicity-induced PN death that signals the end point of the disease.

Results

PN excitatory synaptic responses and firing behaviour following high frequency parallel fibre (PF) activity commonly encountered during sensory stimulation in vivo were adversely influenced by acute inhibition of glutamate transporters. In the presence of a non-transportable blocker of glutamate transporters we observed very large amplitude and duration excitatory postsynaptic currents accompanied by excessive firing of the PNs. A combination of AMPA and mGluR1, but not NMDA, type glutamate receptor activation powered the hyper-excitable PN state. The enhanced PN excitability also recruited a presynaptic mGluR4 dependent mechanism that modified short term plasticity at the PF synapse. Conclusions: Our findings indicate that reduced glutamate transporter activity, as occurs in the early stages of some forms of human cerebellar ataxias, excessively excites PNs and disrupts the timing of their output. Our findings raise the possibility that sustaining cerebellar glutamate uptake may provide a therapeutic approach to prevent this disruption and the glutamate excitotoxicity-induced PN death that signals the end point of the disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。