Downregulation of miR-184 facilitates osseous differentiation in periodontal ligament stem cells by modulating nuclear factor I-C

miR-184 下调通过调节核因子 IC 促进牙周膜干细胞的骨性分化

阅读:8
作者:Chunying Li, Guanglin Duan, Yaopu Feng

Conclusion

Downregulation of miR-184 facilitates osteoblastic differentiation in PDLSCs by modulating NFI-C, providing novel therapeutic strategy for regeneration of dental tissues.

Methods

PDLSCs were isolated from premolars, and the osteoblastic differentiation was validated via Alizarin red staining and determination of ALP (alkaline phosphatase) activity. Expression of osteogenic specific genes were evaluated by western blot, and the expression pattern of miR-184 was determined by qRT-PCR. Target gene of miR-184 was then verified by dual luciferase reporter assay.

Purpose

PDLSCs (periodontal ligament stem cells), derived from dental tissues, are candidate cells for regeneration of dental tissues. MiRNAs could regulate osteogenic differentiation and the transformation into osteoblasts. This study was conducted to figure out how miR-184 regulates osteoblastic differentiation in PDLSCs. Materials and

Results

Osteogenic-induced PDLSCs were successfully established with increased mineral deposition, ALP activity and protein expression of RUNX2 (runt-related transcription factor 2), osterix and BSP (bone sialoprotein). MiR-184 was reduced during osteoblastic differentiation of PDLSCs, and over-expression of miR-184 suppressed osteoblastic differentiation, as evidenced by reduction in mineral deposition, ALP activity and protein expression of RUNX2, osterix and BSP. MiR-184 could target NFI-C (nuclear factor I-C), and inhibit NFI-C expression in PDLSCs. NFI-C was enhanced during osteoblastic differentiation of PDLSCs, suggesting negative correlation with miR-184. Forced NFI-C expression promoted osteoblastic differentiation, and counteracted with the suppressive effects of miR-184 on osteoblastic differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。