Gold Nanorod-Incorporated Halloysite Nanotubes Functionalized with Antibody for Superior Antibacterial Photothermal Treatment

含有金纳米棒的埃洛石纳米管与抗体功能化以实现卓越的抗菌光热治疗

阅读:5
作者:Ofer Prinz Setter, Iser Snoyman, Ghazal Shalash, Ester Segal

Abstract

The global spread of antibiotic-resistant strains, and the need to protect the microflora from non-specific antibiotics require more effective and selective alternatives. In this work, we demonstrate for the first time a superior antibacterial photothermal effect of plasmonic gold nanorods (AuNRs) via their incorporation onto natural clay halloysite nanotubes (HNTs), which were functionalized with anti-E. coli antibodies (Ab-HNTs). AuNRs were incorporated onto the Ab-HNTs through a facile freeze-thaw cycle, and antibody integrity following the incorporation was confirmed via infrared spectroscopy and fluorescence immunolabeling. The incorporation efficiency was studied using UV-Vis absorption and transmission electron microscopy (TEM). Mixtures of E. coli and AuNR-Ab-HNTs hybrids or free AuNRs were irradiated with an 808 nm laser at 3-4 W cm-2, and the resulting photothermal antibacterial activity was measured via plate count. The irradiated AuNR-Ab-HNTs hybrids exerted an 8-fold higher antibacterial effect compared to free AuNR under 3.5 W cm-2; whereas the latter induced a 6 °C-higher temperature elevation. No significant antibacterial activity was observed for the AuNR-Ab-HNTs hybrid against non-target bacteria species (Serratia marcescens and Staphylococcus epidermidis). These findings are ascribed to the localization of the photothermal ablation due to the binding of the antibody-functionalized clay to its target bacteria, as supported through TEM imaging. In the future, the HNTs-based selective carriers presented herein could be tailored with other antibacterial nanoparticles or against another microorganism via the facile adjustment of the immobilized antibody.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。