Excessive gonadotropin-releasing hormone (GnRH) is considered to be an initiating factor in the etiology of polycystic ovary syndrome (PCOS). GnRH neuronal axons terminate at the hypothalamic arcuate nucleus and median eminence, where tanycytes, specialized glial cells, have been proposed to modulate GnRH secretion through plasticity. However, the precise role of the "GnRH-tanycyte unit" during the pathological state of PCOS has not been thoroughly explored. In this study, we demonstrated the architecture and distribution of GnRH neurons and tanycytes. In PCOS-like mice, retracted tanycyte processes and dysregulated GnRH-tanycyte unit may create an environment conducive to the excessive secretion of GnRH and subsequent reproductive endocrine dysfunction. Mechanistically, excessive androgens impair hypothalamic neuroglial homeostasis by acting through the androgen receptor (AR) and its downstream target integrin β1 (Itgb1), thereby suppressing the FAK/TGF-βR1/Smad2 signaling pathway. Both selective deletion of AR and overexpression of Itgb1 in tanycytes counteracted the detrimental effects of androgens, alleviating endocrine dysfunction. Collectively, this study highlights the alterations in the GnRH-tanycyte unit mediated by androgen/AR/Itgb1 signaling and provides a novel perspective for developing therapies for hypothalamic hormone secretion disorders by maintaining solid neuroglial structures in the brain.
Regulating Integrin β1 to Restore Gonadotropin-Releasing Hormone-Tanycyte Unit Function in Polycystic Ovary Syndrome-Related Hypothalamic Dysregulation
调节整合素 β1 以恢复多囊卵巢综合征相关下丘脑失调中的促性腺激素释放激素-Tanycyte 单位功能
阅读:4
作者:Yu Wang, Xiaoyu Tong, Yan Xiao, Yicong Wang, Wei Hu, Wenhan Lu, Yuning Chen, Jiajia Li, Wenhao Gao, Hongru Gao, Yicheng Tian, Sizhe Dai, Yi Feng
| 期刊: | Research (Wash D C) | 影响因子: | |
| 时间: | 2025 | 起止号: | 2025 Feb 19:8:0619. |
| doi: | 10.34133/research.0619 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
