NOTCH2 gene mutation and gamma-secretase inhibitor in mediating the malignancy of ovarian cancer

NOTCH2基因突变及γ-分泌酶抑制剂介导卵巢癌恶性化

阅读:5
作者:Wenjing Wang, Ruiqian Liu, Wei Liao, Landie Ji, Jie Mei, Dan Su

Abstract

The carcinogenic mechanisms by which serous ovarian cancer (OC) occurs remain to be explored. Currently, we have conducted whole-exome sequencing (WES) and targeted deep sequencing to validate new molecular markers, including NOTCH2, that impede the progression of cell malignancy in ovarian cancer (OC). Following NOTCH2 P2113S mutation and NOTCH signaling pathway inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) treatment, the cell proliferation, migration, and invasion of A2780 and SKOV3 OC cells were examined in vitro. WES identified the P2113S point mutation in NOTCH2. The NOTCH2 mutation rate was 26.67 % among the 75 OC cases. The NOTCH2 P2113S mutation and DAPT treatment downregulated Notch-2 protein levels in the two OC cells. Functionally, interfering with NOTCH2 expression promoted the migrative, proliferative, and invasive capacities of OC cells. Western blotting further confirmed that NOTCH2-mediated tumorigenesis lies in reducing apoptosis through dysregulation of Bax/Bcl2, affecting repair of DNA damage through reducing DNA-PK and blocking the transcription factor Hes1 along with increasing immune regulator p65. Furthermore, the NOTCH2-mediated tumorigenesis was mostly reversed after NF-κB inhibitor Bay11-7082 treatment. These findings identified the NOTCH2 P2113S mutation in ovarian carcinogenesis, and NOTCH2 P2113S is a potential target in treating OC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。