Ca2+ transients in myenteric glial cells during the colonic migrating motor complex in the isolated murine large intestine

小鼠离体大肠结肠移行运动复合体中肌间神经胶质细胞的 Ca2+ 瞬变

阅读:7
作者:Matthew J Broadhead, Peter O Bayguinov, Takanobu Okamoto, Dante J Heredia, Terence K Smith

Abstract

Enteric glia cells (EGCs) form a dense network around myenteric neurons in a ganglia and are likely to have not only a supportive role but may also regulate or be regulated by neural activity. Our aims were to determine if EGCs are activated during the colonic migrating motor complex (CMMC) in the isolated murine colon. Strips of longitudinal muscle were removed and Ca(2+) imaging (Fluo-4) used to study activity in EGCs within myenteric ganglia during CMMCs, followed by post hoc S100 staining to reveal EGCs. The cell bodies of EGCs and their processes formed caps and halos, respectively, around some neighbouring myenteric neurons. Some EGCs (36%), which were largely quiescent between CMMCs, exhibited prolonged tetrodotoxin (TTX; 1 μm)-sensitive Ca(2+) transients that peaked ∼39 s following a mucosal stimulus that generated the CMMC, and often outlasted the CMMC (duration ∼23 s). Ca(2+) transients in EGCs often varied in duration within a ganglion; however, the duration of these transients was closely matched by activity in closely apposed nerve varicosities, suggesting EGCs were not only innervated but the effective innervation was localized. Furthermore, all EGCs, even those that were quiescent, responded with robust Ca(2+) transients to KCl, caffeine, nicotine, substance P and GR 64349 (an NK2 agonist), suggesting they were adequately loaded with indicator and that some EGCs may be inhibited by substances released by neighbouring neurons. Intracellular Ca(2+) waves were visualised propagating between closely apposed glia and from glial cell processes to the soma (velocity 12 μm s(-1)) where they produced an accumulative rise in Ca(2+), suggesting that the soma acts as an integrator of Ca(2+) activity. In conclusion, Ca(2+) transients in EGCs occur secondary to nerve activity; their activation is driven by intrinsic excitatory nerve pathways that generate the CMMC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。