Cell line-based in vitro models of normal and chronic bronchitis-like airway mucosa to study the toxic potential of aerosolized palladium nanoparticles

基于细胞系的正常和慢性支气管炎样气道粘膜体外模型研究气溶胶化钯纳米粒子的毒性潜力

阅读:6
作者:Jie Ji, Katja Jansen, Vadim Kessler, Gulaim Seisenbaeva, Per Gerde, Maria Malmlöf, Lena Palmberg, Swapna Upadhyay

Background

Physiologically relevant cell line-based models of human airway mucosa are needed to assess nanoparticle-mediated pulmonary toxicity for any xenbiotics expsoure study. Palladium nanoparticles (Pd-NP) originating from catalytic converters in vehicles pose health risks. We aimed to develop in vitro airway models to assess the toxic potential of Pd-NP in normal (Non-CB) and chronic bronchitis-like (CB-like) mucosa models.

Conclusion

The combination of our Non-CB and CB-like mucosa models with the XposeALI® system for aerosolized nanoparticle exposure closely mimics in vivo lung environments and cell-particle interactions. Results from these models, utilizing accessible cell lines, will maximize the reliability of in vitro findings in human health risk assessment.

Methods

Bronchial mucosa models were developed using Epithelial cells (16HBE: apical side) co-cultured with fibroblast (basal side) at an air-liquid interface. Furthermore, both Non-CB and CB-like (IL-13 treatment) models with increased numbers of goblet cells were used. The models were exposed to 3 different doses of aerosolized Pd-NP (0.2, 0.3, and 6 μg/cm2) using XposeALI® and clean air as a control. After 24 h of incubation, the expression of inflammatory (IL6, CXCL8, TNFα, and NFKB), oxidative stress (HMOX1, SOD3, GPx, and GSTA1), and tissue injury/repair (MMP9/TIMP1) markers was assessed using qRT-PCR. The secretion of CXCL-8 and the expression of a tissue injury/repair marker (MMP-9) were measured via ELISA.

Results

Significantly (p < 0.05) increased expressions of CXCL8, IL6, and NFKB were observed at the highest dose of Pd-NP in CB-like models. However, in Non-CB mucosa models, a maximum effect on TNFα and NFKB expression was observed at a medium Pd-NP dose. In Non-CB mucosa models, SOD3 showed a clear dose-dependent response to Pd-NP exposure, while GSTA1 expression was significantly increased (p < 0.05) only at the lowest dose of Pd-NP. The secretion of CXCL-8 increased in a dose-dependent manner in the Non-CB mucosa models following exposure to Pd-NP. In CB-like models, exposure to high concentrations of Pd-NP significantly increased the release of MMP-9 compared to that in other exposure groups.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。