Mouse mandibular-derived osteoclast progenitors have differences in intrinsic properties compared with femoral-derived progenitors

小鼠下颌骨来源的破骨细胞祖细胞与股骨来源的祖细胞在内在特性上存在差异。

阅读:2
作者:Rachel Clark ,Soo Y Park ,Elizabeth W Bradley ,Kim Mansky ,Amy Tasca

Abstract

Craniofacial osteoclasts are essential for site-specific processes such as alveolar bone resorption, tooth eruption, and orthodontic tooth movement. Much of the current understanding of osteoclast development and function comes from studies using long bone-derived cells. Minimal investigation has been done to explore skeletal site differences. The overall goal of this study was to determine if mandibular- and femoral-derived osteoclasts represent distinct populations. To test this hypothesis, bone marrow cells were initially analyzed from the mandible and femur of 2-month-old mice. It was shown that mandibular-derived osteoclasts have enhanced size (mm2) compared with femoral-derived osteoclasts. Since bone marrow macrophages are a heterogenous population, we additionally selected for monocytes and demonstrated that mandibular-derived monocytes also form osteoclasts with increased size compared with femoral-derived monocytes. Osteoclast precursor populations from both skeletal sites were analyzed by flow cytometry. A newly described Ly6CHigh+ population as well as the Ly6Cint population was increased in the mandibular-derived cells. The difference in differentiation potential between monocyte cultures suggests that the increase in the Ly6CHigh+ population may explain the enhanced differentiation potential in mandibular-derived cells. Monocyte genes such as Pu.1, C/ebp-a, and Prdm1 are increased in expression in mandibular-derived monocytes compared with femoral-derived monocytes. As expected with enhanced differentiation, osteoclast genes including Nfatc1, Dc-stamp, Ctsk, and Rank are upregulated in mandibular-derived osteoclast precursors. Future studies will determine how changes in the environment of the mandible lead to changes in percentages of osteoclast progenitors and their differentiation potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。