Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models--association with liver and adipose tissue effects

FGF21 在胰岛素抵抗小鼠模型中的急性降糖和胰岛素增敏作用——与肝脏和脂肪组织效应相关

阅读:7
作者:Jing Xu, Shanaka Stanislaus, Narumol Chinookoswong, Yvonne Y Lau, Todd Hager, Jennifer Patel, Hongfei Ge, Jen Weiszmann, Shu-Chen Lu, Melissa Graham, Jim Busby, Randy Hecht, Yue-Sheng Li, Yang Li, Richard Lindberg, Murielle M Véniant

Abstract

Recombinant fibroblast growth factor (FGF)21 has antihyperglycemic, antihyperlipidemic, and antiobesity effects in diabetic rodent and monkey models. Previous studies were confined to measuring steady-state effects of FGF21 following subchronic or chronic administration. The present study focuses on the kinetics of biological actions of FGF21 following a single injection and on the associated physiological and cellular mechanisms underlying FGF21 actions. We show that FGF21 resulted in rapid decline of blood glucose levels and immediate improvement of glucose tolerance and insulin sensitivity in two animal models of insulin resistance (ob/ob and DIO mice). In ob/ob mice, FGF21 led to a 40-60% decrease in blood glucose, insulin, and amylin levels within 1 h after injection, and the maximal effects were sustained for more than 6 h despite the 1- to 2-h half-life of FGF21. In DIO mice, FGF21 reduced fasting blood glucose and insulin levels and improved glucose tolerance and insulin sensitivity within 3 h of treatment. The acute improvement of glucose metabolism was associated with a 30% reduction of hepatic glucose production and an increase in peripheral glucose turnover. FGF21 appeared to have no direct effect on ex vivo pancreatic islet insulin or glucagon secretion. However, it rapidly induced typical FGF signaling in liver and adipose tissues and in several hepatoma-derived cell lines and differentiated adipocytes. FGF21 was able to inhibit glucose release from H4IIE hepatoma cells and stimulate glucose uptake in 3T3-L1 adipocytes. We conclude that the acute glucose-lowering and insulin-sensitizing effects of FGF21 are potentially associated with its metabolic actions in liver and adipose tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。