Synthesis and photophysical investigations of pyridine-pyrazolate bound boron(III) diaryl complexes

吡啶-吡唑结合硼(III)二芳基配合物的合成及光物理研究

阅读:6
作者:Rashid Javaid, Aziz Ul Rehman, Manan Ahmed, Mohammad Hashemi Karouei, Nima Sayyadi

Abstract

This study presents the design and synthetic pathway of unsymmetric ligands based on pyridine-pyrazolate scaffold with Donor-Acceptor (D-A) molecular arrays and their boron complexes to achieve a large Stokes shift. Intermolecular charge transfer (ICT) triggered by the uneven molecular charge distribution from electronically dense pyrazolate (donor) part of the ligands to electron-deficient boron centre (acceptor) resulted in a mega Stokes shift up to 263 nm for selected compounds while retaining the characteristic quantum efficiency and chemical stability. The photophysical properties of derivatization of pyrazolate group in the pyridine-pyrazolate scaffold of diaryl boron complexes were explored based on UV-Visible, steady-state and time-resolved fluorescence spectroscopy. An interesting dual emission along with quenching behaviour was also observed for 2-(6-methoxynaphthelene) 5-(2-pyridyl) pyrazolate boron complex (P5) due to the formation of a twisted intermolecular charge transfer (TICT) state from a locally excited (LE) state rendering it a potential candidate for sensing applications based on H-Bond quenching. In addition, the extended excited state lifetime of the reported compounds compared to classical boron-dipyrromethene (BODIPY) makes them suitable as potential probes for analytical applications requiring a longer excited state lifetime.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。